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ABSTRACT: The main aim of this paper is to implement "An Efficient In-network Moving Object Tracking
in wireless sensor network". In wireless sensor networks sampling time interval and the number of nodes
involved in each stage of tracking are important factors which have high effect on the efficiency of target
tracking applications. In this paper, a new phase-based adaptive target tracking method has also been
proposed which at each time step employs two helpful tools. First, an extended Kalman filter (EKF)-based
estimation technique to predict the tracking error and second, an energy consumption model to estimate
energy consumption based on different number of nodes and sampling time intervals. By using these
estimations, this method selects the best number of nodes and sampling time interval according to an
objective function which is defined based on tracking accuracy and energy consumption.
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I. INTRODUCTION

Very past progress of wireless communication and
embedded micro-sensing MEMS technologies has
made wireless sensor networks possible. In light of
storage in sensors, a sensor network can be considered
as a distributed database, in which one can conduct in-
network data processing. An important issue of wireless
sensor networks is object tracking, which typically
involves two basic operations:-a) Update b) Query This
issue has been intensively studied in other areas, such
as cellular networks. However, the in-network
processing characteristic of sensor networks has posed
new challenges to this issue. Here we develop several
tree structures for in-network object tracking which
take the physical topology of the sensor network into
consideration. The optimization process has two stages.
The first stage tries to reduce the location update cost
based on a deviation-avoidance principle and a highest-
weight first principle. The second stage further adjusts
the tree obtained in the first stage to reduce the query
cost. The way we model this problem allows us to
analytically formulate the cost of object tracking given
the update and query rates of objects Extensive
simulations are conducted, which show a significant
improvement over existing solutions.

To detect a target and trac its motion using wireless
sensor network with the help of phase based optical
flow algorithm. Object tracking is an important
application of wireless sensor networks (e.g., military
intrusion detection and habitat monitoring). Existing
research efforts on object tracking can be categorized in
two ways. In the first category, the problem of
accurately estimating the location of an object is
addressed. In the second category, in-network data
processing and data aggregation for object tracking are
discussed. The main theme of this paper is to propose a
data aggregation model for object tracking. Object
tracking typically involves two basic operations: update
and query.
In general, updates of an object’s location are initiated
when the object moves from one sensor to another. A
query is invoked each time when there is a need to find
the location of an interested object. Location updates
and queries may be done in various ways. A naive way
for delivering a query is to flood the whole network.
The sensor whose sensing range contains the queried
object will reply to the query. Clearly, this approach is
inefficient because a considerable amount of energy
will be consumed when the network scale is large or
when the query rate is high. Alternatively, if all location
information is stored at a specific sensor (e.g., the sink),
no flooding is needed.
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But whenever a movement is detected, update messages
have to be sent. One drawback is that when objects
move frequently, abundant update messages will be
generated. The cost is not justified when the query rate
is low. Clearly, these are tradeoffs.
In, a Drain-And-Balance (DAB) tree structure is
proposed to address this issue. As far as we know, this
is the first in-network object tracking approach in
sensor networks where query messages are not required
to be flooded and update messages are not always
transmitted to the sink. However as  two drawbacks.
First, a DAB tree is a logical tree not reflecting the
physical structure of the sensor network; hence, an edge
may consist of multiple communication hops and a high
communication cost may be incurred. Second, the
construction of the DAB tree does not take the query
cost into consideration. Therefore, the result may not be
efficient in some cases. To relieve the aforementioned
problems, we propose a new tree structure for in-
network object tracking in a sensor network. In
particular, we take the physical topology of the sensor
network into consideration. We take a two-stage
approach. The first stage aims at reducing the update
cost, while the second stage aims at further reducing the
query cost. For the first stage, several principles,
namely deviation-avoidance and highest-weight-first
ones, are pointed out to construct an object tracking tree
to reduce the communication cost of location update.
Two solutions are proposed: Deviation-Avoidance Tree
(DAT) and Zone-based Deviation-Avoidance Tree (Z-
DAT). The latter approach tries to divide the sensing
area into square-like zones, and recursively combine
these zones into a tree. Our simulation results indicate
that the Z-DAT approach is very suitable for regularly
deployed sensor networks.

II. SIMULATION RESULTS

We have simulated a sensing field of size 256x256.
Unless otherwise stated, 4096   sensors are deployed in
the sensing field. Two deployment models are
considered. In the first one, sensors are regularly
deployed as a 64x64 grid-like network. In the second
model, sensors are randomly deployed. In both models,
the sink may be located near the center of the network
or one corner of the network. Event rates are generated
based on a model similar to the city mobility model .
Assuming the sensing field as a square of size r X r, the
model divides the field into 2X2 sub-squares called
level-1 sub regions. Each level-1 sub region is further
divided into   2 X 2 sub-squares called level-2 sub
regions. This process is repeated recursively. Given an
object located in any position in the sensing field, it has
a probability p1 to leave its current level-1 sub region,
and a probability 1- p1 to stay. In the former case, the
object will move either horizontally or vertically with a
distance of r/2. In the latter case, the object has a
probability p2 to leave its current level-2 sub-region,
and a probability 1 - p2 to stay. Again, in the former
case, the object will move either horizontally or
vertically with a distance of r/22, and in the latter case it
may cross level-3 sub-regions. The process repeats
recursively. The probability pi is determined by an
exponential probability pi = e-C. 2d-i , where C is a
positive constant and d is the total number of levels.
In fact, the above behavior only formulates how objects
move in the sensing field. After sensors are deployed in
the network (no matter the sensors are deployed in a
regular or random way), the movement patterns of these
objects will generate event rates between neighboring
sensors.

Fig. 1. The tree structure in wireless sensor network when the sensors are randomly deployed.
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Fig 2.a Comparison of update costs when the sensors are regularly deployed and the sink at corner
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Fig 2.b Comparison of update costs when the sensors are regularly deployed and the sink at center.
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Fig 2.c Comparison of update costs when the sensors are randomly deployed and the sink at corner.
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Also, objects are queried by the sink with the same
probability. Since objects may be located at different
sensors with different probabilities, the query rates may
vary in different sensors. We compare our schemes
with a naive scheme and the DAB scheme. In the naive
scheme, any update is sent to the sink (i.e., there is no
in-network processing capability.) In this case, the
query cost is always zero, so it is preferable when the

query rates are relatively high. For the DAB scheme, all
sensors are considered leaf nodes, and a logical
structure is used to connect these leaf nodes. When two
sub-trees are merged into one, the root of the sub-tree
which is closer to the sink will become the root of the
merged tree (note that this may still cause deviation).
First, we observe the advantage of using in-network
processing to reduce update cost.
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Fig. 2.d Comparison of update costs when the sensors are randomly deployed and the sink at center.

Figure 2.(a, b, c, d) below shows the result under
different values of C for regular and random sensor
deployment. As can be seen, a larger C implies a higher
moving locality, thus leading to a lower update cost.
The naïve scheme has the highest update cost, which is
reasonable. By exploiting the concept of deviation
avoidance and taking the physical topology into
account, DAT and Z-DAT further outperform DAB.
Next, we investigate the effect of deployment models.
By comparing, the graphs in Fig. 2(a, b, c, d), we see

that Z-DAT outperforms DAT under regular
deployment, but the advantage is almost negligible
under random deployment. This is because maintaining
the shapes of sub-trees in Z-DAT is difficult. For
example, Fig.  shows snapshots of DAT trees and Z-
DAT trees under regular and random deployments. As
can be seen, Z-DAT does exploit the locality of sensors
by partitioning sensors into zones under regular
deployment. However, this is not true for the random
case.
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Fig. 3.a Comparison of update costs under different (α, δ) for for Z-DAT  when regularly deployed at C= 0.1.
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Fig. 3.b Comparison of update costs under different (α, δ) for for Z-DAT  when randomly deployed at C= 0.1.
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Fig. 3.c Comparison of update costs under different (α, δ) for for Z-DAT  when randomly deployed at C= 0.1.

Fig. 3.d Comparison of update costs under different (α, δ) for for Z-DAT  when randomly deployed at C= 0.1.
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To get further insight into the performance of Z-DAT,
we vary α and δ, and show the results in Fig., 3. (a, b,
c, d)where a 4096- and a 2500-node sensor networks
are simulated. Note that when = 1 and δ = 0, Z-DAT
is equivalent to DAT. For regular deployment, Z-DAT
performs well when 'α' is larger than 4. However, for
random deployment, the Z-DAT does not perform

well, because maintaining the shapes of sub-trees in Z-
DAT is difficult. Furthermore, it can be seen that when
δ=0, Z-DAT has better performance. This means that a
square-like zone is better than a rectangle like zone.
Also, note that the trend in both 4096- and 2500-node
sensors networks (the latter has a non-power-of-2
number of nodes) are quite similar.
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Fig. 4.a Comparison of query costs when sensors are regularly deployed with the sink at center.

Fig. 4.b Comparison of query costs when sensors are regularly deployed with the sink at corner.
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Fig. 4.c Comparison of query costs when sensors are randomly deployed with the sink at corner.
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Fig. 4.d Comparison of query costs when sensors are randomly deployed with the sink at center.

Next, we examine the query cost. The result is shown in
Fig. 4(a, b, c, d). In general, the query cost increases
linearly with the aggregate query rate. As mentioned
earlier, the query cost of the naïve scheme is always
zero. Both query costs for DAT and Z-DAT are lower
than that of DAB. This is attributed to the fact that
query messages are always transmitted along the
shortest paths between the sink and sensors in DAT and
Z-DAT. Also due to the similar reason, the query cost is
independent of the shape of T; thus, DAT and Z-DAT
perform similarly despite the deployment models

CONCLUSION

In this paper, we have developed several efficient ways
to construct a logical object tracking tree in a sensor
network. We have shown how to organize sensor nodes
as a logical tree so as to facilitate in-network data
processing and to reduce the total communication cost
incurred by object tracking. For the location update
part, our work can be viewed as the extension of the
work in, and we enhance the work by exploiting the
physical structure of the sensor network and the concept
of deviation avoidance. In addition, we also consider
the query operation and formulate the query cost of an
object tracking tree given the query rates of sensors. In
particular, our approach tries to strike a balance
between the update cost and query cost. Performance
analyses are presented with respect to factors such as
moving rates and query rates. Simulation results show
that by exploiting the deviation-avoidance trees,
algorithms DAT and Z-DAT are able to reduce the
update cost. By adjusting the deviation-avoidance trees,
algorithm QCR is able to significantly reduce the total
cost when the aggregate query rates is high, thus
leading to efficient object tracking solutions.
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